GluCEST Shows Improved Signal in MRI-Negative Patients

Article

Single-slice GluCEST has been shown to lateralize and localize epileptogenic regions of the hippocampus on 7 Tesla MRI in MRI-negative patients.

Peter N. Hadar

Single-slice glutamate chemical exchange saturation transfer (GluCEST) has been shown to lateralize and localize epileptogenic regions of the hippocampus on 7 Tesla magnetic resonance imaging (MRI) in MRI-negative patients.

New data have shown that in 4 nonlesional—or MRI-negative—patients with left-sided temporal lobe epilepsy (TLE), there were statistically significantly increased GluCEST signals in the ipsilateral total hippocampus, relative to the contralateral total hippocampus (P = .048; 1-tailed 2-sample t test). GluCEST values in the ipsilateral hippocampus were 7.15% to 9.22%, compared with 6.57% to 7.85% in the contralateral hippocampus.

“As we recruit more patients, we will further investigate GluCEST signals in hippocampal subfields and correlate these findings to electrophysiological and clinical outcomes, eventually leading to a superior understanding of epilepsy excitatory networks and improvement of surgical resection outcomes,” Peter N. Hadar, a medical student from the University of Pennsylvania’s Litt Laboratory, and colleagues said.

Patients underwent a protocol that included a localizer scan, followed by a T1w magnetization-prepared rapid acquisition gradient echo scan, which found repetition time/inversion time/echo time (TR/TI/TE) = 2800/1500/4.4 ms, fractional anisotropy = 70, generalized autocalibrating partial parallel acquisition (GRAPPA) = 2, 170 sagittal slices, and voxel size 0.8 mm3.

Patients then underwent T2w MRI for subfield segmentation (TR/TE = 3000/388 ms, matrix = 448 x 428, in-plane resolution = 0.4 mm x 0.4 mm, slice thickness = 1.0 mm, 224 oblique coronal slices perpendicular to the hippocampal long axis), followed by B0 field map and B1 field map.

Finally, after the field mapping, patients went through the 3-D GluCEST scan (TR/TE = 5.9/2.83 ms, matrix = 240 x 192, in-plane resolution = 1 mm2, slice thickness = 1.0 mm, GRAPPA = 2, 60 axial slices). CEST raw images were obtained by varying saturation offset frequencies from ±1.8 to ±4.2 parts per million (ppm) with a step size of 0.3 ppm and saturation B1 + root-mean-scale values of 3 mT, 1.5 mT, and 0.75 mT.

B0 inhomogeneity was <1.2 ppm with global shimming, although relative B1 inhomogeneity varied from 0.5 to 1.4 ppm.

“To acquire whole brain B0 and B1 corrected GluCEST, a segmented elliptical center encoding strategy was used for the phase encode(ky)—slice encode(kz) plane, with ASHS [automatic segmentation of hippocampal subfields] segmentation to measure hippocampal GluCEST,” the authors wrote. “The total scan session took about 1 hour.”

Currently, the parameters for high-fidelity acquisition optimization are still being put together, although the results found were consistent with those of the previous investigation of single-slice GluCEST in MRI-negative patients with TLE.

For even more resources pertaining to the field of epilepsy, check out MD Magazine's sister site, NeurologyLive. The site

Recent Videos
How to Adequately Screen for and Treat Cognitive Decline in Primary Care
James R. Kilgore, DMSc, PhD, PA-C: Cognitive Decline Diagnostics
Stephanie Nahas, MD, MSEd | Credit: Jefferson Health
John Harsh, PhD: Exploring Once-Nightly Sodium Oxybate Therapy for Narcolepsy
John Harsh, PhD
© 2024 MJH Life Sciences

All rights reserved.