Pneumococcal Colonization Adapts to Vaccination, Antibiotics

Article

Invasive pneumococcal disease rates have declined with widespread vaccination while non-vaccine and antibiotic-resistant strains have emerged.

Grace Lee, MD, MPH, Director, Center for Healthcare Research in Pediatrics and Associate Professor of Population Medicine and Pediatrics, Harvard Medical School

Grace Lee, MD, MPH

Surveillance over a 15-year period confirms that rates of invasive pneumococcal disease (IPD) have declined since widespread introduction of pneumococcal conjugate vaccines (PCV), but that S. Pneumoniae colonization has adapted, with increases in non-PCV and antibiotic-resistant strains.

Grace Lee, MD, MPH, Director, Center for Healthcare Research in Pediatrics and Associate Professor of Population Medicine and Pediatrics, Harvard Medical School, Boston, MA and colleagues conducted one of the largest studies to date to examine the impact of pneumococcal vaccines and of antibiotic usage on trends in colonization in young, healthy children.

They emphasized the importance of continuing such community-based surveillance, given the extent that colonization was found to have adapted to interventions.

“Despite our best efforts to understand factors associated with success of certain serotypes under selective pressure, the complex interplay of a multitude of host and organism factors challenges our ability to predict serotypes-specific success,” researchers wrote.

The researchers added that it is impossible to dissemble the connection between individual antimicrobial use, antimicrobial agent use in the community, and serotype-specific characteristics, as well as “determine the impact those relationships have on the success of particular strains that continue to circulate in the community.”

In commentary accompanying the study, Douglas Swanson, MD and Christopher Harrison, MD, Division of Infectious Diseases, Children’s Mercy Kansas City, University of Missouri-Kansas City, Kansas City, MO described the increasing number of strains in vaccines — from PCV7 introduced in 2000 to PCV13 in 2010 — and the changing patterns of antibiotic use as “playing whack-a-mole.”

“The hope that IPD and antibiotic resistance would disappear after widespread use of PCV vaccines has yet to be realized,” Swanson and Harrison wrote. “To overcome the phenomenon of serotype replacement, vaccine strategies need to expand beyond serotype specificity by identifying antigens common to all S. Pneumoniae. Meanwhile, studies like this one that monitor pneumococcal seroepidemiology will inform treatment and vaccine strategies.”

Lee and colleagues based their surveillance on nasopharyngeal swabs collected during 6 seasons between 2000 to 2014 in well-child or acute care visits of over 6,000 children over 7 years old. An initial 23% to 32% decline in rates of overall pneumococcal colonization within several years of introducing PCV7 vaccination was characterized as transient.

The prominent non-PCV serotype 19A that emerged accounted for the largest portion of IPD as well as difficult-to-treat noninvasive infections, until several years after it was included in the PCV-13.

Lee and colleagues report that in 2014, serotype 19A was responsible for 15.4% of penicillin-intermediate susceptible isolates, 66.7% of penicillin-resistant isolates, 15% of ceftriaxone non-susceptible isolates, 4.4% of erythromycin non-susceptible isolates and 13.3% of clindamycin non-susceptible isolates. Although there was a decline in 19A colonization with increased use of PCV-13, researchers noted that the rates of resistance to each antibiotic continued to increase.

Particular risk factors for S. Pneumoniae colonization were identified, including younger age, more hours spent in day care, a respiratory tract infection on day of sampling, a smoker in the household, and recent antibiotic use.

Swanson and Harrison suggested each can be addressed by timely PCV administration to young children, fewer hours in day care, educational efforts on restricting second-hand smoke exposure, and avoiding inappropriate antibiotic use.

“Of these, judicious antibiotic use and on-time PCV 13 are actions providers can impact the most,” Swanson and Harrison wrote.

The assessment of pneumococcal colonization over a 15-year period was published in the November issue of Pediatrics.

Related Coverage

Trans Women More Likely to Get Tested for HIV

AAP Offers Guidance on Infectious Diseases in Organized Sports

Common Malaria Drug Prevents Zika Pregnancy Transmission

Related Videos
Nanette B. Silverberg, MD: Uncovering Molluscum Epidemiology
A Year of RSV Highs and Lows, with Tina Tan, MD
Ryan A. Smith, MD: RSV Risk in Patients with IBD
Cedric Rutland, MD: Exploring Immunology's Role in Molecule Development
Cedric Rutland, MD: Mechanisms Behind Immunology, Cellular Communication
Glenn S. Tillotson, PhD: Treating Immunocompromised Patients With RBX2660
Paul Feuerstadt, MD: Administering RBX2660 With a Colonoscopy
Jessica Allegretti, MD, MPH: Evaluating the First Few Months of RBX2660
Naim Alkhouri, MD: Improving NASH Diagnosis With FibroScan
© 2024 MJH Life Sciences

All rights reserved.