James Shapiro, MD: Insulin Production In T1D Patients After Stem Cell Therapy


Dr. Shapiro discusses the implantable VC-02 device success in producing C-peptide in patients with type 1 diabetes and what is coming next.

Recently, data from studies developing novel cell replacement therapies to address significant unmet needs in severe disease, including type 1 diabetes (T1D).

The study in question is an ongoing, first-in-human Phase ½ study that reported that its stem-cell therapy produced insulin in people with severe T1D. A total of 17 patients were implanted with the ViaCyte PEC-Direct device at 6 different centers, with the device comprising pancreatic cells (PEC-01) contained within pouches for subcutaneous placement.

In an interview with HCPLive, James Shapiro MD PhD, Canada Research Chair and Director of the Islet Transplant Program at the University of Alberta and lead author of the Cell Reports Medicine report, discussed the findings of the study and what they ultimately represent.

“It was a very successful trial in terms of demonstrating the safety, it was absolutely safe for patients, while they were, you know, many different potential side effects on the anti rejection drugs and the minor surgeries that the patients went through, they tolerated the placement and the removal of the devices exceedingly well,” Shapiro said.

The trial results indicated 34% of patients had evidence of C-peptide production, while 63% of patients had evidence of surviving insulin producing cells at different time points when the devices were taken out and examined under a microscope.

Shapiro went on to describe the next wave of trials using gene-edited products that will not require anti-rejection drugs, called PEC-QT. He noted the difference between a treatment and a cure is the limitless source of cells and lack of need for rejection drugs.

“I think if that happened, then we really would have a therapy that could be given to children just diagnosed with diabetes, they could be given to patients with all forms of diabetes, not just patients with T1D,” he said. “So, I think this does herald a big step forward for for stem cell based therapists in the cure potential curative treatment for all forms of diabetes.”

Recent Videos
Charles C. Wykoff, MD, PhD: Interim Analysis on Ixo-Vec Gene Therapy for nAMD | Image Credit: Retina Consultants of Texas
Sunir J. Garg, MD: Pegcetacoplan Preserves Visual Function on Microperimetry | Image Credit: Wills Eye Hospital
Edward H. Wood, MD: Pharmacodynamics of Subretinal RGX-314 for Wet AMD | Image Credit: Austin Retina Associates
Katherine Talcott, MD: Baseline EZ Integrity Features Predict GA Progression | Image Credit: LinkedIn
Veeral Sheth, MD: Assessment of EYP-1901 Supplemental Injection Use in Wet AMD | Image Credit: University Retina
Brendon Neuen, MBBS, PhD | Credit: X.com
HCPLive Five at ADA 2024 | Image Credit: HCPLive
Viability of Elamipretide for Geographic Atrophy in Dry AMD | Image Credit: HCPLive
© 2024 MJH Life Sciences

All rights reserved.